B.Sc. (P)/B.A(P) with Statistics as Non- Major Category III

DISCIPLINE SPECIFIC CORE COURSE 4: ELEMENTS OF STATISTICAL INFERENCE

CREDIT DISTRIBUTION, ELIGIBILITY, AND PRE-REQUISITES OF THE COURSE

Course title & Code	Cred its	Credit distribution of the Course			Eligibility Criteria	Pre-requisite of the Course (if any)
		Lectu re	Tutor ial	Practical/ Practic e		
Elements of Statistical Inference	4	3	0	1	Class XII with Mathematics	Basic probability, probability distributions and sampling distributions

Learning Objectives:

The learning objectives of this course are as follows:

- To understand the concept of estimation theory and testing of hypothesis.
- To infer about the unknown population parameters based on random samples.
- To validate the estimation/ inference about the population using hypothesis testing.

Learning Outcomes:

After successful completion of this course, students will be able to:

- Understand estimation theory, point and interval estimations.
- Comprehend the characteristics of a good estimator and different methods of estimation.
- Apply the techniques in data analysis.
- Develop the best/most powerful statistical tests to test the hypotheses regarding unknown population parameters by using the Neyman-Pearson theory.

SYLLABUS OF DSC-4

Theory

UNIT I:

Estimation Theory:

Estimation: Parameter space, sample space, point estimation, requirement of a good estimator, consistency, unbiasedness, efficiency, sufficiency, Minimum variance unbiased estimators, Factorization theorem, Fisher- Neyman Criterion: statement and applications, Cramer- Rao inequality: statement and application, MVB estimators and their applications, Statement of Rao-Blackwell theorem and Lehmann-Scheffe theorem.

UNIT II Methods of estimation:

(15 hours)

(15 hours)

Maximum likelihood, least squares and minimum variance, Properties of maximum likelihood estimators (illustration), Interval Estimation: confidence interval and confidence limits for the parameters of normal distribution, confidence intervals for large samples.

UNIT III

Test of significance

Principles of test of significance: Null and alternative hypotheses, simple and composite, Type-I and Type-II errors, critical region, level of significance, power of the test, best critical region, most powerful test, uniformly most powerful test, uniformly most powerful unbiased critical region (UMPU), Neyman- Pearson Lemma: statement and its applications to construct most powerful test.

Practical / Lab Work: - 30 hours

List of Practicals: Practicals based on

- 1. Unbiased estimators and consistent estimators.
- 2. Efficient estimators and relative efficiency of estimators.
- 3. Sufficient estimators and factorization theorem.
- 4. Cramer- Rao inequality and MVB estimators.
- 5. Method of maximum likelihood estimation.
- 6. Method of least squares and minimum variance.
- 7. Confidence interval and confidence limits for the parameters of normal distribution.
- 8. Confidence intervals in case of large samples.
- 9. Type I and Type II errors, power of the test.
- 10. Most powerful critical region (NP Lemma).

Practical work to be conducted using electronic spreadsheet / EXCEL/ Statistical Software Package/ SPSS/ calculators.

ESSENTIAL READINGS:

- Gupta, S.C. and Kapoor, V. K. (2020): Fundamentals of Mathematical Statistics, 12th Ed., Sultan Chand and Sons.
- Miller, I. and Miller, M. (2013). John E. Freund's Mathematical Statistics, 8th Ed., Prentice Hall of India.
- Hogg, R. V., Craig, A. T., and Mckean, J. W. (2005): Introduction to Mathematical Statistics, 6th Edition, Pearson Education.
- Goon, A.K., Gupta, M. K. and Das Gupta, B. (2003): An Outline of Statistical Theory (Vol. II), 4th Edition., World Press, Kolkata.

SUGGESTED READINGS:

- Rohtagi, V. K. and Md., A. K. Saleh, E. (2009): An Introduction to Probability and Statistics, 2nd Edition, John Wiley and Sons.
- Casella, G. and Berger, R. L. (2002): Statistical Inference, 2nd Edition, Thomson Duxbury.
- Mood A.M., Graybill F.A. and Boes D.C. (1974). Introduction to the Theory of Statistics, McGraw Hill.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch University of Delhi, from time to time.

(15 hours)